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In this article, we investigate the mean-square convergence of a novel symplectic local discontinuous
Galerkin method in L

2-norm for stochastic linear Schrödinger equation with multiplicative noise. It is
shown that the mean-square error is bounded, not only by the temporal and spatial step sizes, but also
by their ratio. The mean-square convergence rate with respect to the computational cost is derived under
appropriate assumptions for initial data and noise. Meanwhile, we show that the method preserves the
discrete charge conservation law, which implies an L

2-stability.
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1. Introduction

In this article we consider the stochastic linear Schrödinger equation with multiplicative noise

idu − (Δu + Q(x)u) dt = u ◦ dW , u(x, 0) = u0(x), (1.1)

where t ∈ [0, T ], x ∈ O ⊂ R
d and Q ∈ H

3(O). We employ the periodic boundary condition, and the ◦
in the last term in (1.1) means that the product is of Stratonovich type, so that (1.1) is conservative and
the L2(O)-norm of the solution is a constant almost surely (charge conservation law) (see De Bouard &
Debussche, 2003), i.e., ∫

O
|u(x, t)|2 dx =

∫
O

|u0(x)|2 dx.

The multiplicative noise has been introduced in the context of Scheibe aggregates (Bang et al., 1994;
Rasmussen et al., 1995) and in the context of inhomogeneous media (Bass et al., 1989; Elgin, 1993).
Here W on L

2(O) is a real-valued Wiener process with a filtered probability space (Ω , F , P, {Ft}t∈[0,T ]).
It has the expansion form W(t, x,ω) = ∑∞

k=0 βk(t,ω)φek(x), with (ek)k∈Nd being an orthonormal basis of
L

2(O), {βk}k∈Nd being a sequence of independent Brownian motions and φ ∈ L2(L
2(O); H

γ (O)) being a
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Hilbert–Schmidt operator. The phase flow of equation (1.1) is stochastic symplectic (see Chen & Hong,
2016), i.e.,

ω̄(t) =
∫

O
d(r(t)) ∧ d(s(t)) dx = ω̄(0),

with r and s being the real and imaginary parts of u, respectively.
We propose a symplectic local discontinuous Galerkin method to equation (1.1) in order to, on one

hand preserve the properties of the original problems as much as possible and, on another hand, com-
bine the attractive properties of local discontinuous Galerkin method (see, e.g., Cockburn & Shu, 1998,
2001; Cockburn et al., 2000). We refer interested readers to Xu & Shu (2005) and references therein
for the numerical simulation of the deterministic Schrödinger equation based on local discontinuous
Galerkin method, and to Antonopoulou & Plexousakis (2010) for the convergence analysis of discon-
tinuous Galerkin method applied to the deterministic linear Schrödinger equation with time-variable
domain. Because of the reason that equation (1.1) is meaningful in the sense of integral representation,
we apply the midpoint scheme to discretize the temporal direction at first avoiding dealing with double
temporal–spatial integrals, which is introduced by stochastic integral and local discontinuous Galerkin
discretization. It is shown that the midpoint semidiscretization not only is a symplectic method, but also
possesses the discrete charge conservation law. Furthermore, we show that the semidiscretization is of
order 1 in mean-square convergence sense via a direct approach, whereas Chen & Hong (2016) proved
the same result via a fundamental convergence theorem on the mean-square convergence for the temporal
semidiscretizations. The main difficulty lies in the analysis of the mean-square convergence order for
the spatial direction, where we use local discontinuous Galerkin method to discrete the semidiscretized
equation and obtain the fully discrete method, which is called symplectic local discontinuous Galerkin
method in this article. We solve it by means of the standard approximation theory of projection operator,
Itô isometry and the adapted properties of processes u and W . As a result, we analyse the mean-square
convergence error for the symplectic local discontinuous Galerkin method and derive the mean-square
convergence rate with respect to the computational cost under appropriate hypothesis on initial data
and noise. Moreover, theoretical analysis shows that the obtained fully discrete method is L

2-stable and
preserves the discrete charge conservation law.

The rest of this article is organized as follows. In Section 2, we propose the symplectic local discontin-
uous Galerkin method for stochastic Schrödinger equation and derive the discrete charge conservation law.
In Section 3, we study the mean-square convergence of the obtained method and present the mean-square
error estimation.

2. The symplectic local discontinuous Galerkin method

In this section, we will apply implicit midpoint scheme to (1.1) in the temporal direction, then we discretize
the spatial direction by local discontinuous Galerkin method and obtain the fully discrete method.

2.1 Temporal semidiscrete scheme

The midpoint scheme for (1.1) reads

iun+1 = iun −Δt
(
Δun+ 1

2 + Q(x)un+ 1
2

)
+ un+ 1

2ΔW̃n, n = 0, 1, . . . , N , (2.1)
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whereΔt is the time step size, N = T
Δt , un+ 1

2 = 1
2 (u

n+1 + un), andΔW̃n = ∑∞
k=0

√
Δtζ κk,nφek(x) with ζ κk,n

being the truncation of a N (0, 1)-distribution random variable ξk,n:

ζ κk,n =

⎧⎪⎨
⎪⎩
κ if ξk,n > κ;

ξn if |ξk,n| ≤ κ;

−κ if ξk,n < −κ

with κ := √
4|ln(Δt)|. This choice is motivated by the fact that standard Gaussian random variables

are unbounded for arbitrary values of Δt (for more details, see Milstein et al., 2002). For the truncated
Wiener process, we have the following properties:

(i) E‖ΔW̃n −ΔWn‖2
H1 ≤ KΔt3,

(ii) E‖(ΔW̃n)
2 − (ΔWn)

2‖
H1 ≤ KΔt2,

(iii) E‖(ΔW̃n)
2 − (ΔWn)

2‖2
H1 ≤ KΔt3, (2.2)

where the constant K depends on ‖φ‖L2(L
2,H1). Based on the fact that W̃ is real valued, by multiplying both

sides of equation (2.1) by ūn+ 1
2 , which is the conjugate of un+ 1

2 , and then taking the imaginary part and
integrating it over the whole space domain, we can get the discrete charge conservation law as follows.

Proposition 2.1 Under the periodic boundary conditions, the semidiscrete scheme (2.1) of the system
(1.1) has the discrete charge conservation law, i.e.,∫

O
|un+1(x)|2 dx =

∫
O

|un(x)|2 dx, n = 0, 1, . . . , N . (2.3)

Furthermore, the semidiscrete scheme (2.1) preserves the stochastic symplectic structure (see Chen
& Hong, 2016).

Proposition 2.2 The implicit midpoint scheme (2.1) for the system (1.1) is stochastic symplectic.

2.2 Temporal–spatial fully discrete method

In this subsection, we consider the local discontinuous Galerkin method for the system (2.6) in the spatial
direction and obtain the fully discrete method. To this end, we introduce some spatial-gird notation for
the case d = 1, O = [Lf , Lr] for simplicity. We denote the mesh by Ij = [xj− 1

2
, xj+ 1

2
], for 1 ≤ j ≤ J ,

where Lf = x 1
2
< x 3

2
< · · · < xN+ 1

2
= Lr . Let Δxj = xj+ 1

2
− xj− 1

2
, 1 ≤ j ≤ J with h = max

1≤j≤J
Δxj being

the maximum mesh size. Assume the mesh is regular, namely there is a constant c > 0 independent of h
such that Δxj ≥ ch, 1 ≤ j ≤ J .

If we set u(x, t) = r(x, t) + is(x, t), where r, s are real-valued functions, we can separate (1.1) into
the following form

dr = (sxx + Q(x)s) dt + s ◦ dW ,

ds = −(rxx + Q(x)r) dt − r ◦ dW . (2.4)
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Introducing two additional new variables, p = sx, q = rx, the equation (2.4) can be rewritten as

dr = (px + Q(x)s) dt + s ◦ dW ,

p = sx,

ds = −(qx + Q(x)r) dt − r ◦ dW ,

q = rx. (2.5)

We apply the midpoint scheme in the temporal direction of (2.5) to obtain the following first-order
semidiscrete system

rn+1 = rn +
(
(px)

n+ 1
2 + Q(x)sn+ 1

2

)
Δt + sn+ 1

2ΔW̃n,

pn+ 1
2 = (sx)

n+ 1
2 ,

sn+1 = sn −
(
(qx)

n+ 1
2 + Q(x)rn+ 1

2

)
Δt − rn+ 1

2ΔW̃n,

qn+ 1
2 = (rx)

n+ 1
2 . (2.6)

We consider the local discontinuous Galerkin method for the system (2.6) in the spatial direction and
obtain the fully discrete method: find rh, ph, sh, qh ∈ V k

h , which now denote real piecewise polynomial of
degree at most k, such that for all test functions νh,ωh,αh,βh ∈ V k

h = {ν : ν ∈ Pk(Ij); 1 ≤ j ≤ J} with
Pk(Ij) being the set of polynomials of degree up to k defined on the cell Ij.∫

Ij

rn+1
h νh dx −

∫
Ij

rn
hνh dx −Δt

[
(p̂n+ 1

2 ν−
h )j+ 1

2
− (p̂n+ 1

2 ν+
h )j− 1

2

]

+Δt
∫

Ij

(
p

n+ 1
2

h (νh)x − s
n+ 1

2
h Qhνh

)
dx −

∫
Ij

s
n+ 1

2
h νhΔW̃n dx = 0,

∫
Ij

p
n+ 1

2
h ωh dx +

∫
Ij

s
n+ 1

2
h (ωh)x dx −

[
(ŝn+ 1

2ω−
h )j+ 1

2
− (ŝn+ 1

2ω+
h )j− 1

2

]
= 0,

∫
Ij

sn+1
h αh dx −

∫
Ij

sn
hαh dx +Δt

[
(q̂n+ 1

2 α−
h )j+ 1

2
− (q̂n+ 1

2 α+
h )j− 1

2

]

−Δt
∫

Ij

(
q

n+ 1
2

h (αh)x − r
n+ 1

2
h Qhαh

)
dx +

∫
Ij

r
n+ 1

2
h αhΔW̃n dx = 0,

∫
Ij

q
n+ 1

2
h βh dx +

∫
Ij

r
n+ 1

2
h (βh)x dx −

[
(r̂n+ 1

2 β−
h )j+ 1

2
− (r̂n+ 1

2 β+
h )j− 1

2

]
= 0. (2.7)

In the sequel, we denote by (uh)
+
j+ 1

2
and (uh)

−
j+ 1

2
the values of uh at xj+ 1

2
, from the right cell Ij+1, and from

the left cell Ij, respectively. Also the numerical fluxes are of the general form

p̂n+ 1
2 = (pn+ 1

2 )+, r̂n+ 1
2 = (rn+ 1

2 )−, q̂n+ 1
2 = (qn+ 1

2 )+, ŝn+ 1
2 = (sn+ 1

2 )−, (2.8)
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where we have omitted the half-integer indices j + 1
2 or j − 1

2 as all quantities in (2.8) are computed at
the same points.

Remark 2.3 The choice for the fluxes (2.8) is not unique. The important point is that r̂ and q̂, ŝ and p̂
should be chosen from different directions.

With such a choice of fluxes (2.8), we can get the first main result about discrete charge conservation
law of the symplectic local discontinuous Galerkin method (2.7).

Theorem 2.4 Under the periodic boundary conditions, the symplectic local discontinuous Galerkin
method (2.7) has the discrete charge conservation law, i.e.,

∫ Lr

Lf

|un+1
h |2 dx =

∫ Lr

Lf

|un
h|2 dx, n = 0, 1, 2, . . . , N . (2.9)

Proof. To complete the proof of the discrete charge conservation law. First, we write (2.7) using the
notations un

h = rn
h + isn

h,ψn
h = qn

h + ipn
h and take αh = νh,βh = ωh, then (2.7) becomes

i
∫

Ij

un+1
h νh dx − i

∫
Ij

un
hνh dx − [(ψ̂n+ 1

2 ν−
h )j+ 1

2
− (ψ̂n+ 1

2 ν+
h )j− 1

2
]Δt

+Δt
∫

Ij

(ψ
n+ 1

2
h (νh)x − u

n+ 1
2

h Qhνh) dx −
∫

Ij

u
n+ 1

2
h νhΔW̃n dx = 0,

∫
Ij

ψ
n+ 1

2
h ωh dx +

∫
Ij

u
n+ 1

2
h (ωh)x dx −

[
(ûn+ 1

2ω−
h )j+ 1

2
− (ûn+ 1

2ω+
h )j− 1

2

]
= 0, (2.10)

where

û = r−
h + is−

h , ψ̂ = q+
h + ip+

h . (2.11)

We now take the complex conjugate for every terms in system (2.10)

− i
∫

Ij

ūn+1
h ν̄h dx + i

∫
Ij

ūn
hν̄h dx −Δt

[
(
¯̂
ψn+ 1

2 ν̄−
h )j+ 1

2
− (

¯̂
ψn+ 1

2 ν̄+
h )j− 1

2

]

+Δt
∫

Ij

(
ψ̄

n+ 1
2

h (ν̄h)x − ū
n+ 1

2
h Qhν̄h

)
dx −

∫
Ij

ū
n+ 1

2
h ν̄hΔW̃n dx = 0,

∫
Ij

ψ̄
n+ 1

2
h ω̄h dx +

∫
Ij

ū
n+ 1

2
h (ω̄h)x dx −

[
( ¯̂un+ 1

2 ω̄−
h )j+ 1

2
− ( ¯̂un+ 1

2 ω̄+
h )j− 1

2

]
= 0. (2.12)
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We introduce a short-hand notation

Hj(u
n
h,ψn

h ; νh,ωh) = i
∫

Ij

un+1
h νh dx − i

∫
Ij

un
hνh dx −Δt

∫
Ij

ψ
n+ 1

2
h ωh dx

+Δt
∫

Ij

(
ψ

n+ 1
2

h (νh)x − u
n+ 1

2
h Qhνh

)
dx −

∫
Ij

u
n+ 1

2
h νhΔW̃n dx

−Δt
∫

Ij

u
n+ 1

2
h (ωh)x dx −Δt

[
(ψ̂n+ 1

2 ν−
h )j+ 1

2
− (ψ̂n+ 1

2 ν+
h )j− 1

2

]
+Δt

[
(ûn+ 1

2ω−
h )j+ 1

2
− (ûn+ 1

2ω+
h )j− 1

2

]
. (2.13)

Then from (2.12), we also have the expression of H̄j(un
h,ψn

h ; νh,ωh). If we take νh = ū
n+ 1

2
h , ωh = ψ̄

n+ 1
2

h

in both functions Hj(un
h,ψn

h ; νh,ωh) and H̄j(un
h,ψn

h ; νh,ωh), both functions are zero. Hence, we obtain

Hj(u
n
h,ψn

h ; ū
n+ 1

2
h , ψ̄

n+ 1
2

h )− H̄j(u
n
h, pn

h; ū
n+ 1

2
h , ψ̄

n+ 1
2

h ) = 0. (2.14)

By the relation (2.11) for the numerical fluxes, (2.14) becomes

i
∫

Ij

(
|un+1

h |2 − |un
h|2
)

dx +Δt
∫

Ij

(
ψ

n+ 1
2

h (ū
n+ 1

2
h )x + ū

n+ 1
2

h (ψ
n+ 1

2
h )x

)
dx︸ ︷︷ ︸

A

−Δt
∫

Ij

(
ψ
�n+ 1

2
h (u

n+ 1
2

h )x + u
n+ 1

2
h (ψ̄

n+ 1
2

h )x

)
dx︸ ︷︷ ︸

B

−Δt
[
(ψ+

h ū−
h )

n+ 1
2

j+ 1
2

− (ψ̄+
h u−

h )
n+ 1

2

j+ 1
2

]
︸ ︷︷ ︸

C

+Δt
[
(u−

h ψ̄
−
h )

n+ 1
2

j+ 1
2

− (ū−
h ψ

−
h )

n+ 1
2

j+ 1
2

]
︸ ︷︷ ︸

D

+Δt
[
(ψ+

h ū+
h )

n+ 1
2

j− 1
2

− (ψ̄+
h u+

h )
n+ 1

2

j− 1
2

]
︸ ︷︷ ︸

G

−Δt
[
(u−

h ψ̄
+
h )

n+ 1
2

j− 1
2

− (ū−
h ψ

+
h )

n+ 1
2

j− 1
2

]
︸ ︷︷ ︸

H

= 0, (2.15)

where (ψ+
h ū−

h )
n+ 1

2

j+ 1
2

= (ψ
n+ 1

2 ,+
h ū

n+ 1
2 ,−

h )j+ 1
2
.

By Leibniz formula for derivatives, we can derive

A = Δt
∫

Ij

(ψ
n+ 1

2
h ū

n+ 1
2

h )x dx = Δt
[
(ψ−

h ū−
h )

n+ 1
2

j+ 1
2

− (ψ+
h ū+

h )
n+ 1

2

j− 1
2

]
,

B = Δt
∫

Ij

(ψ̄
n+ 1

2
h u

n+ 1
2

h )x dx = Δt
[
(u−

h ψ̄
−
h )

n+ 1
2

j+ 1
2

− (u+
h ψ̄

+
h )

n+ 1
2

j− 1
2

]
and then

A − B = 2iΔt
[
Im(ψ−

h ū−
h )

n+ 1
2

j+ 1
2

− Im(ψ+
h ū+

h )
n+ 1

2

j− 1
2

]
. (2.16)
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Using a − ā = 2i Im(a), for a ∈ C, we have

C = 2iΔtIm(ψ+
h ū−

h )
n+ 1

2

j+ 1
2

, D = −2iΔtIm(ψ−
h ū−

h )
n+ 1

2

j+ 1
2

,

G = 2iΔtIm(ψ+
h ū+

h )
n+ 1

2

j− 1
2

, H = −2iΔtIm(ψ+
h ū−

h )
n+ 1

2

j− 1
2

. (2.17)

We combine all these equalities (2.15), (2.16) and (2.17) to obtain∫
Ij

(|un+1
h |2 − |uh|n) dx + Φ̂

n+ 1
2

j+ 1
2

− Φ̂
n+ 1

2

j− 1
2

= 0,

where the numerical entropy flux is given by

Φ̂
n+ 1

2

j+ 1
2

= −2ΔtIm(ψ+
h ū−

h )
n+ 1

2

j+ 1
2

, Φ̂
n+ 1

2

j− 1
2

= −2ΔtIm(ψ+
h ū−

h )
n+ 1

2

j− 1
2

.

Summing up over j, the flux terms vanish because of the periodic boundary conditions. Thus, we
finish the proof. �

Corollary 2.5 The discrete charge conservation law trivially implies an L2-stability of the numerical
solution.

3. Error estimates for the fully discrete method

In this section, we will state the error estimate of the symplectic local discontinuous Galerkin method
for the problem (1.1) with d = 1. In the sequel, E denotes an expectation operator of a random variable,
and K , C are positive constants depending on coefficient Q, the finial time T and the initial data u0, but
independent of h and Δt. They may change from line to line.

In order to obtain the error estimate to the symplectic local discontinuous Galerkin method (2.7) with
the fluxes (2.8), we divide the error into two parts:

u(tn)− un
h = u(·, tn)− un︸ ︷︷ ︸

Temporal error

+ un − un
h︸ ︷︷ ︸

Spatial error

. (3.1)

3.1 Temporal error

To obtain the temporal error estimate, we need some regularity results of the numerical solution un(x)
for (2.6). We state it in the following two lemmas.

Lemma 3.1 Assume that Q ∈ H
γ and E‖u0‖2p

Hγ
< ∞, γ = 0, 1, · · · and φ ∈ L2(L

2; H
γ ). We have the

following regularity of temporal semidiscretization, i.e., for p ≥ 1, there exists a constant K ≡ K(p) such
that

E‖un‖2p
Hγ

≤ K , n = 1, 2, . . . , N . (3.2)
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Proof. First, we rewrite temporal semidiscretization system (2.6) into the function of un:

un+1 = ŜΔtu
n − iΔtTΔtQun+ 1

2 − iTΔtu
n+ 1

2ΔW̃n, (3.3)

where un denotes the complex function rn + isn, operators are defined by ŜΔt = (I + iΔt
2 ∂xx)

−1(I − iΔt
2 ∂xx)

and TΔt = (I + iΔt
2 ∂xx)

−1, where I is an identity operator.
In particular, TΔt is a bounded linear inverse operator from L

2 to L
2. Let {λk}k∈N ⊂ R and {ek}k∈N ⊂ L

2

be the eigenvalues and eigenfunctions of the linear operator ∂xx. The corresponding eigenvalues of I+iΔt
2 ∂xx

are {1 + iΔt
2 λk}k∈N. Thus, the linear operator TΔt is well defined. Furthermore, it is easy to check that the

operator ‖TΔt‖L(L2;L2) ≤ 1 and ŜΔt is isometry in L
2, i.e., ‖ŜΔt‖L(L2;L2) = 1. See De Bouard & Debussche

(2006), for example.
Next, we replace the function of un into equation (3.3) iteratively. We obtain

un = Ŝn
Δtu

0 − iΔt
n∑
�=1

Ŝn−�
Δt TΔtQu�−

1
2 − i

n∑
�=1

Ŝn−�
Δt TΔtu

�− 1
2ΔW̃�−1. (3.4)

In order to bound function un, we insert the equality u�−
1
2 = 1

2 (ŜΔt + I)u�−1 + 1
2

(
u� − ŜΔtu�−1

)
into the

stochastic term and take H
γ -norm to get

‖un‖2p
Hγ

≤ K‖u0‖2p
Hγ

+ KΔt
n∑
�=1

‖u�−
1
2 ‖2p

Hγ

+ K

∥∥∥∥∥ i

2

n∑
�=1

Ŝn−�
Δt TΔt

(
ŜΔt + I

)
u�−1ΔW̃�−1

∥∥∥∥∥
2p

Hγ

+ Kn2p−1
n∑
�=1

∥∥(u� − ŜΔtu
�−1)ΔW̃�−1

∥∥2p

Hγ
. (3.5)

For the third term on the right-hand side of (3.5), using the fact that u�−1 is independent of increment
ΔW̃�−1 and Burkholder–Davis–Gundy-type inequality (for instance, see Proposition 9 in Appendix A.1
of Jentzen & Kloeden (2011)) we have

E

∥∥∥∥∥ i

2

n∑
�=1

Ŝn−�
Δt TΔt

(
ŜΔt + I

)
u�−1ΔW̃�−1

∥∥∥∥∥
2p

Hγ

≤ K(p)E

[
Δt

n∑
�=1

‖Ŝn−�
Δt TΔt

(
ŜΔt + I

)
u�−1‖2

Hγ
‖φ‖2

L2(L2;Hγ )

]p

≤ K(p)ΔtE
n∑
�=1

‖Ŝn−�
Δt TΔt

(
ŜΔt + I

)
u�−1‖2p

Hγ
‖φ‖2p

L2(L2;Hγ )

≤ KΔt
n∑
�=1

E‖u�−1‖2p
Hγ

. (3.6)
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To estimate the last term on the right-hand side of (3.5), we note that

(u� − ŜΔtu
�−1)ΔW̃�−1 = − iΔtTΔtQu�−

1
2ΔW̃�−1 − i

2
TΔt(ŜΔt + I)u�−1(ΔW̃�−1)

2

− i

2
TΔt

(
(u� − ŜΔtu

�−1)ΔW̃�−1

)
ΔW̃�−1. (3.7)

Taking L2p(Ω; H
γ )-norm to obtain

E
∥∥(u� − ŜΔtu

�−1)ΔW̃�−1

∥∥2p

Hγ
≤ KΔt2p(Δtκ2)pE‖u�−

1
2 ‖2p

Hγ
+ KΔt2p

E‖u�−1‖2p
Hγ

+ K(Δtκ2)pE‖(u� − ŜΔtu
�−1)ΔW̃�−1‖2p

Hγ
, (3.8)

where we use the embedding H
1 ↪→ L

∞ for γ = 0 or use ‖fg‖Hγ ≤ K‖f ‖Hγ ‖g‖Hγ for γ ≥ 1. Note that
there exists a constant Δt∗ > 0 such that K(Δtκ2)p ≤ 1

2 < 1 for Δt ≤ Δt∗ (here K is the same as the
last term on the right-hand side of (3.8)), which leads to

1

2
E
∥∥(u� − ŜΔtu

�−1)ΔW̃�−1

∥∥2p

Hγ
≤ KΔt2

(
E‖u�‖2p

Hγ
+ E‖u�−1‖2p

Hγ

)
. (3.9)

Combining inequalities (3.5), (3.6) and (3.9) together, we have

E‖un‖2p
Hγ

≤ K + KΔt
n∑
�=0

E‖u�‖2p
Hγ

,

where the positive constant K depends on p, T , operators ŜΔt and TΔt , ‖u0‖Hγ ,φ, but does not depend on
Δt. The discrete Gronwall’s lemma leads to the assertion. �

Lemma 3.2 Given γ = 1, 2, . . . and assume Q ∈ H
γ , u0 ∈ L2p(Ω; H

γ ) and φ ∈ L2(L
2; H

γ ), then we
have holder continuity in temporal direction, i.e., for p ≥ 1,

E‖un+1 − un‖2p

Hγ−1 ≤ KΔtp, n = 1, 2, . . . , N .

Proof. The estimation is similar as the proof of the last term on the right-hand side of (3.5); see estimations
(3.7)–(3.9). Start from equation (3.3),

un+1 − un = (ŜΔt − I)un − iΔtTΔtQun+ 1
2 − iTΔtu

n+ 1
2ΔW̃n.

Since ‖ŜΔt − I‖L(Hγ ,Hγ−1) ≤ KΔt
1
2 (see, for instance, De Bouard & Debussche, 2006), we take

L2p(Ω; H
γ−1)-norm on both sides of the above equation and get

E‖un+1 − un‖2p

Hγ−1 ≤ KΔtp
E‖un‖2p

Hγ
+ KΔt2p

E

(
‖un‖2p

Hγ−1 + ‖un+1‖2p

Hγ−1

)
+ KΔtp

E‖un‖2p

Hγ−1 + K(Δtκ2)pE‖un+1 − un‖2p

Hγ−1 , (3.10)
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there exists a constant Δt∗ > 0 such that K(Δtκ2)p ≤ 1
2 < 1 for Δt ≤ Δt∗ (here K is the same as the

last term on the right-hand side of (3.10)), which leads to

1

2
E‖un+1 − un‖2p

Hγ−1 ≤ KΔtp
E‖un‖2p

Hγ
≤ KΔtp.

This completes the proof. �

Now we are in a position to establish an error estimate of the semidiscrete method (2.6) by virtue of
these two lemmas.

Theorem 3.3 Assume that u0 ∈ L2(Ω; H
3), Q ∈ H

3 and φ ∈ L2(L
2; H

3), then it is of the mean-square
order 1, i.e.,

(
E‖u(tn)− un‖2

L2

)1/2 ≤ KΔt.

Proof. From (3.4) and (1.1), it follows

un+1 = Ŝn+1
Δt u0 − iΔt

n+1∑
�=1

Ŝn+1−�
Δt TΔtQu�−

1
2 − i

n+1∑
�=1

Ŝn+1−�
Δt TΔtu

�− 1
2ΔW̃�−1, (3.11)

and

u(tn+1) = S(tn+1)u
0 − i

∫ tn+1

0
S(tn+1 − τ)Qu(τ ) dτ − i

∫ tn+1

0
S(tn+1 − τ)u(τ ) ◦ dW(τ )

= S(tn+1)u
0 − i

n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)Qu(τ ) dτ − i
n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)u(τ ) ◦ dW(τ ). (3.12)

Subtracting (3.11) from (3.12) leads to

u(tn+1)− un+1 =
(

S(tn+1)− Ŝn+1
Δt

)
u0︸ ︷︷ ︸

− i
n+1∑
�=1

(∫ t�

t�−1

S(tn+1 − τ)Qu(τ ) dτ −ΔtŜn+1−�
Δt TΔtQu�−

1
2

)

− i
n+1∑
�=1

(∫ t�

t�−1

S(tn+1 − τ)u(τ ) ◦ dW(τ )− Ŝn+1−�
Δt TΔtu

�− 1
2ΔW̃�−1

)

=: A + B + C.

We will estimate A, B, and C separately.

Downloaded from https://academic.oup.com/imajna/article-abstract/37/2/1041/2669981/Mean-square-convergence-of-a-symplectic-local
by Academy of Mathematics and System Sciences, CAS user
on 16 September 2017



SYMPLECTIC LDG METHOD FOR SSE 1051

• The first term A.
From De Bouard & Debussche (2006), we know that ‖S(tn+1)− Ŝn+1

Δt ‖L(H3,L2) ≤ KΔt. Thus,

E‖A‖2
L2 ≤ KE‖u0‖2

H3Δt2 ≤ KΔt2.

• The second term B.
To estimate B, we insert one term

± i
n+1∑
�=1

∫ t�

t�−1

S(tn+1 − r)Qut�−1,u�−1(τ ) dτ

into the expression of B, and we have

B = −i
n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)Q
(

u(τ )− ut�−1,u�−1(τ )
)

dτ

− i
n+1∑
�=1

∫ t�

t�−1

(
S(tn+1 − r)Qut�−1,u�−1(τ )− Ŝn+1−�

Δt TΔtQu�−
1
2

)
dτ

=: B1 + B2.

By using the expression of u(τ )− ut�−1,u�−1(τ ), that is,

u(τ )− ut�−1,u�−1(τ ) = S(τ − t�−1)(u(t�−1)− u�−1)

− i
∫ τ

t�−1

S(τ − t�−1 − ρ)Q
(
u(ρ)− ut�−1,u�−1(ρ)

)
dρ

− i
∫ τ

t�−1

S(τ − t�−1 − ρ)
(
u(ρ)− ut�−1,u�−1(ρ)

) ◦ dW(ρ),

we have

E‖u(τ )− ut�−1,u�−1(τ )‖2
L2 ≤ KE‖u(t�−1)− u�−1‖2

L2

+ K
∫ τ

t�−1

E‖u(ρ)− ut�−1,u�−1(ρ)‖2
L2 dρ.

Therefore, Gronwall’s inequality leads to

E‖u(τ )− ut�−1,u�−1(τ )‖2
L2 ≤ KE‖u(t�−1)− u�−1‖2

L2 , (3.13)
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thus for term B1,

E‖B1‖2
L2 ≤ K(n + 1)

n+1∑
�=1

E

∥∥∥ ∫ t�

t�−1

S(tn+1 − τ)Q
(
u(τ )− ut�−1,u�−1(τ )

)
dτ
∥∥∥2

L2

≤ KT
n+1∑
�=1

∫ t�

t�−1

E

∥∥∥S(tn+1 − τ)Q
(
u(τ )− ut�−1,u�−1(τ )

)∥∥∥2

L2
dτ

≤ KΔt
n+1∑
�=1

E‖u(t�−1)− u�−1‖2
L2 .

We split term B2 further as follows

B2 = −i
n+1∑
�=1

∫ t�

t�−1

(
S(tn+1 − r)− Ŝn+1−�

Δt TΔt

)
Qut�−1,u�−1(τ ) dτ

− i
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔtQ

(
ut�−1,u�−1(τ )− u�−1

)
dτ

− iΔt
n+1∑
�=1

Ŝn+1−�
Δt TΔtQ

(
u� − u�−1

)
=: B2

a + B2
b + B2

c .

For term B2
a, based on ‖S(tn)− Ŝn

Δt‖L(H3;L2) ≤ KΔt , ‖I − TΔ‖L(H3;L2) ≤ KΔt and Lemma 3.1, we have

E‖B2
a‖2

L2 ≤ K(n + 1)
n+1∑
�=1

E

∥∥∥ ∫ t�

t�−1

(
S(tn+1 − r)− Ŝn+1−�

Δt TΔt

)
Qut�−1,u�−1(τ ) dτ

∥∥∥2

L2

≤ KT
n+1∑
�=1

∫ t�

t�−1

E

∥∥∥(S(tn+1 − r)− Ŝn+1−�
Δt TΔt

)
Qut�−1,u�−1(τ )

∥∥∥2

L2
dτ

≤ KT
n+1∑
�=1

∫ t�

t�−1

∥∥∥S(tn+1 − r)− Ŝn+1−�
Δt TΔt

∥∥∥2

L(H3;L2)
‖Q‖2

H3E‖ut�−1,u�−1(τ )‖2
H3 dτ

≤ KΔt2.

To estimate term B2
b , we insert the expression of ut�−1,u�−1(τ )− u�−1 into it, and we have

B2
b = −i

n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔtQ

[
(S(τ − t�−1)− I)u�−1

−i
∫ τ

t�−1

S(τ − ρ)

(
Q − i

2

)
ut�−1,u�−1(ρ)dρ

]
dτ
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−
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔtQ

∫ τ

t�−1

S(τ − ρ)ut�−1,u�−1(ρ) dW(ρ) dτ .

The estimate of the first term is similar to before and it reads

E

∥∥∥∥∥−i
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔtQ

[
(S(τ − t�−1)− I)u�−1

−i
∫ τ

t�−1

S(τ − ρ)

(
Q − i

2

)
ut�−1,u�−1(ρ)dρ

]
dτ

∥∥∥∥∥
2

L2

≤ K
n+1∑
�=1

∫ t�

t�−1

E

∥∥∥∥∥(S(τ − t�−1)− I)u�−1 − i
∫ τ

t�−1

S(τ − ρ)

(
Q − i

2

)
ut�−1,u�−1(ρ)dρ

∥∥∥∥∥
2

L2

dτ

≤ K
n+1∑
�=1

∫ t�

t�−1

{
‖S(τ − t�−1)− I‖2

L(H2;L2)
E‖u�−1‖2

H2 + KΔt
∫ τ

t�−1

E‖ut�−1,u�−1(ρ)‖2
L2 dρ

}
dτ

≤ KΔt2,

where in the last step, we use Lemma 3.1 and ‖S(τ − t�−1) − I‖L(H2;L2) ≤ KΔt (see De Bouard &
Debussche, 2006).

Concerning the second term, we employ Fubini’s theorem and Itô isometry and Lemma 3.1,

E

∥∥∥−
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔtQ

∫ τ

t�−1

S(τ − ρ)ut�−1,u�−1(ρ) dW(ρ) dτ
∥∥∥2

L2

= E

∥∥∥−
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔtQ

∫ t�

ρ

S(τ − ρ)ut�−1,u�−1(ρ) dτ dW(ρ)
∥∥∥2

L2

≤
n+1∑
�=1

∫ t�

t�−1

E

∥∥∥Ŝn+1−�
Δt TΔtQ

∫ t�

ρ

S(τ − ρ)ut�−1,u�−1(ρ) dτ
∥∥∥2

L2
dρ

≤ KΔt
n+1∑
�=1

∫ t�

t�−1

∫ t�

ρ

E‖ut�−1,u�−1(ρ)‖2
L2 dτ dρ

≤ KΔt2.

The estimate of term B2
c is similar to that of term B2

b by replacing the expression of u� − u�−1. Combining
all the above inequalities, we obtain the desired estimate of B

E‖B‖2
L2 ≤ KΔt2 + KΔt

n+1∑
�=1

E‖u(t�−1)− u�−1‖2
L2 .

• The third term C.
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To estimate C, we change Stratonovich integral into Itô one, noting that Fφ = ∑
�∈Nd

(
φe�(x)

)2
,

C = −1

2

n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)u(τ )Fφ dτ − i
n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)u(τ ) dW(τ )

+ i
n+1∑
�=1

Ŝn+1−�
Δt TΔtu

�− 1
2ΔW̃�−1.

We split it further

C = −i
n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)
(

u(τ )− ut�−1,u�−1(τ )
)

dW(τ )

− i
n+1∑
�=1

∫ t�

t�−1

(
S(tn+1 − τ)− Ŝn+1−�

Δt TΔt

)
ut�−1,u�−1(τ ) dW(τ )

− i
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔt

(
ut�−1,u�−1(τ )− u�−1

)
dW(τ )+ i

2

n+1∑
�=1

Ŝn+1−�
Δt TΔt

(
u� − u�−1

)
ΔW̃�−1

− 1

2

n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)u(τ )Fφ dτ + i
n+1∑
�=1

Ŝn+1−�
Δt TΔtu

�− 1
2

(
ΔW̃�−1 −ΔW�−1

)
.

By replacing the expressions of ut�−1,u�−1(τ )− u�−1 and u� − u�−1 into the above equation, we have

C = −i
n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)
(

u(τ )− ut�−1,u�−1(τ )
)

dW(τ )

− i
n+1∑
�=1

∫ t�

t�−1

(
S(tn+1 − τ)− Ŝn+1−�

Δt TΔt

)
ut�−1,u�−1(τ ) dW(τ )

− i
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔt

(
(S(τ − t�−1)− I)u�−1

−i
∫ τ

t�−1

S(τ − ρ)

(
Q − i

2

)
ut�−1,u�−1(ρ) dρ

)
dW(τ )

+ i

2

n+1∑
�=1

Ŝn+1−�
Δt TΔt

(
(ŜΔt − I)u�−1 − iΔtTΔtQu�−

1
2

)
ΔW̃�−1

− 1

2

n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)
(

u(τ )− ut�−1,u�−1(ρ)
)

Fφ dτ

−
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔt

∫ τ

t�−1

S(τ − ρ)ut�−1,u�−1(ρ) dW(ρ) dW(τ )
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+ 1

2

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�− 1

2 (ΔW̃�−1)
2

− 1

2

n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)ut�−1,u�−1(ρ)Fφ dτ

+ i
n+1∑
�=1

Ŝn+1−�
Δt TΔtu

�− 1
2

(
ΔW̃�−1 −ΔW�−1

)
= C1 + C2 + C3 + C4 + C5,

where C j denotes terms in the jth lines for j = 1, . . . , 5.
The estimates of C1, C2 and C3 are similar as before. Take C1 as an example, via Itô isometry, we have

E

∥∥∥C1
∥∥∥2

L2
≤ K

n+1∑
�=1

∫ t�

t�−1

[
E‖u(τ )− ut�−1,u�−1(τ )‖2

L2

+ E

∥∥∥(S(tn+1 − τ)− Ŝn+1−�
Δt TΔt

)
ut�−1,u�−1(τ )

∥∥∥2

L2

]
dτ

≤ KΔt2 + KΔt
n+1∑
�=1

E‖u(t�−1)− u�−1‖2
L2 ,

where in the last step we utilize (3.13), the estimate of operators ŜΔt , S and TΔt , and Lemma 3.1. Similarly,
we may obtain

E

∥∥∥C2 + C3
∥∥∥2

L2
≤ KΔt2 + KΔt

n+1∑
�=1

E‖u(t�−1)− u�−1‖2
L2 .

We estimate C4 and C5 together, since the estimate of them is much technique. First, for the first term
in C4, we have

−
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔt

∫ τ

t�−1

S(τ − ρ)ut�−1,u�−1(ρ) dW(ρ) dW(τ )

= −
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔt

∫ τ

t�−1

(
S(τ − ρ)− TΔt

)
ut�−1,u�−1(ρ) dW(ρ) dW(τ )

−
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔt

∫ τ

t�−1

TΔt

(
ut�−1,u�−1(ρ)− u�−1

)
dW(ρ) dW(τ )

−
n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1

∫ t�

t�−1

∫ τ

t�−1

dW(ρ) dW(τ ).
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We claim that the last term in the above equality has the form

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1

∫ t�

t�−1

∫ τ

t�−1

dW(ρ) dW(τ )

= 1

2

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1
(
(ΔW�−1)

2 − FφΔt
)

.

In fact,

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1

∫ t�

t�−1

∫ τ

t�−1

dW(ρ) dW(τ )

=
∑

k1,k2∈N

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1φek1φek2

∫ t�

t�−1

∫ τ

t�−1

dβk1(ρ) dβk2(τ )

=
∑

k1=k2∈N

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1φek1φek2

∫ t�

t�−1

∫ τ

t�−1

dβk1(ρ) dβk1(τ )

+
∑

k1<k2

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1φek1φek2

∫ t�

t�−1

∫ τ

t�−1

dβk1(ρ) dβk2(τ )

+
∑

k1>k2

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1φek1φek2

∫ t�

t�−1

∫ τ

t�−1

dβk1(ρ) dβk2(τ )

= I + II + III. (3.14)

Because of∫ t�

t�−1

∫ τ

t�−1

dβ(ρ) dβ(τ) =
∫ t�

t�−1

β(τ)dβ(τ)− β(t�−1)(Δβ)

= 1

2

(
β2(t�)− β2(t�−1)

)
− 1

2
Δt − β(t�−1)(Δβ) = 1

2

(
(Δβ)2 −Δt

)
,

with β(t) being a standard Brownian motion and Δβ = β(t�)− β(t�−1), we have

I = 1

2

∑
k1=k2∈N

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1φek1φek2

(
(Δβk1)

2 −Δt
)

.

We change the index of k1 and k2 in the last term of (3.14) to obtain

III =
∑

k2>k1

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1φek2φek1

∫ t�

t�−1

∫ τ

t�−1

dβk2(ρ) dβk1(τ )
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and

II + III =
∑

k1<k2

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1φek1φek2

×
[∫ t�

t�−1

∫ τ

t�−1

dβk1(ρ) dβk2(τ )+
∫ t�

t�−1

∫ τ

t�−1

dβk2(ρ) dβk1(τ )

]

=
∑

k1<k2

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1φek1φek2Δβk1Δβk2 .

Combining them together we may prove the claim.
After the rearrangement of C4 + C5, we have

C4 + C5 = −
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔt

∫ τ

t�−1

(
S(τ − ρ)− TΔt

)
ut�−1,u�−1(ρ) dW(ρ) dW(τ )

−
n+1∑
�=1

∫ t�

t�−1

Ŝn+1−�
Δt TΔt

∫ τ

t�−1

TΔt

(
ut�−1,u�−1(ρ)− u�−1

)
dW(ρ) dW(τ )

− 1

2

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1
(
(ΔW�−1)

2 − (ΔŴ�−1)
2
)

+ 1

4

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δt(u
� − u�−1)(ΔŴ�−1)

2

− 1

2

n+1∑
�=1

∫ t�

t�−1

S(tn+1 − τ)ut�−1,u�−1(ρ)Fφ dτ + 1

2

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1FφΔt

+ i
n+1∑
�=1

Ŝn+1−�
Δt TΔtu

�− 1
2

(
ΔW̃�−1 −ΔW�−1

)
= D1 + D2 + D3 + D4 + D5,

where Dj denotes terms in jth line for j = 1, . . . , 5. The estimates of D1 + D2 come from Itô isometry
and Lemma 3.1, that is,

E‖D1 + D2‖2
L2 ≤ K

n+1∑
�=1

∫ t�

t�−1

∫ τ

t�−1

‖S(τ − ρ)− TΔt‖2
L(H1;L2)

‖ut�−1,u�−1(ρ)‖2
H1 dρ dτ

+ K
n+1∑
�=1

∫ t�

t�−1

∫ τ

t�−1

+‖ut�−1,u�−1(ρ)− u�−1‖2
L2 dρ dτ

≤ KΔt2.
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The estimate of the first term in D3 is benefit from properties (2.2) of truncated Wiener process,

E

∥∥∥∥∥−1

2

n+1∑
�=1

Ŝn+1−�
Δt T 2

Δtu
�−1
(
(ΔW�−1)

2 − (ΔŴ�−1)
2
)∥∥∥∥∥

2

L2

≤ KE

n+1∑
�1=1

n+1∑
�2=1

‖u�1−1‖
L2‖u�2−1‖

L2‖(ΔW�1−1)
2 − (ΔŴ�1−1)

2‖
H1‖(ΔW�2−1)

2 − (ΔŴ�2−1)
2‖

H1

≤ KΔt2.

By inserting the expression of u� − u�−1 into the second term in D3 and estimating as before, we could
get E‖D3‖2

L2 ≤ KΔt2. The estimate of D3 is similar to that of B2 and is bounded also by KΔt2. For the
term D5, we split it further to get

D5 = i
n+1∑
�=1

Ŝn+1−�
Δt TΔtu

�−1
(
ΔW̃�−1 −ΔW�−1

)

+ i

2

n+1∑
�=1

Ŝn+1−�
Δt TΔt(u

� − u�−1)
(
ΔW̃�−1 −ΔW�−1

)
.

For the first term, we have

E‖i
n+1∑
�=1

Ŝn+1−�
Δt TΔtu

�−1
(
ΔW̃�−1 −ΔW�−1

)
‖2

L2

≤ K
n+1∑
�=1

E(‖u�−1‖2
L2)E(‖ΔW̃�−1 −ΔW�−1‖2

H1) ≤ KΔt2.

The estimate of the second term follows from inserting the expression of u�−u�−1 and estimating similarly,
finally, we have E‖D5‖2

H1 ≤ KΔt2.
Combining all these analysis above, we obtain

E‖u(tn+1)− un+1‖2
L2 ≤ KΔt2 + KΔt

n+1∑
�=1

‖u(t�−1)− u�−1‖2
L2 .

Therefore, Gronwall’s lemma leads to the assertion. �

3.2 Spatial error

We state the spatial error estimate of the symplectic local discontinuous Galerkin method (2.7) for the
stochastic linear Schrödinger equation (1.1).
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Theorem 3.4 Assume u0 ∈ L2(Ω; H
k+2) and φ ∈ L2(L

2; H
k+2). Let un

h be the numerical solution of the
symplectic local discontinuous Galerkin method (2.7). Then there exists a constant h0 > 0 such that for
h ≤ h0,

E‖un − un
h‖2

L2 ≤ Ch2k+2 + CΔt−1h2k+2. (3.15)

Proof. Notice that the method (2.7) is also satisfied when the numerical solutions rh, ph, sh, qh are replaced
by the exact solutions r, p = sx, s, q = sx. For each fixed tn, we can obtain the cell error equation

Bj(r
n − rn

h , pn − pn
h, sn − sn

h, qn − qn
h; νh,ωh,αh,βh)

=
∫

Ij

[rn+1 − rn+1
h ]νh dx −

∫
Ij

[rn − rn
h ]νh dx +Δt

∫
Ij

(pn+ 1
2 − p

n+ 1
2

h )(νh)x dx

−
∫

Ij

(sn+ 1
2 − s

n+ 1
2

h )νhΔW̃n dx −Δt
∫

Ij

(pn+ 1
2 − p

n+ 1
2

h )ωh dx

−Δt
∫

Ij

(sn+ 1
2 − s

n+ 1
2

h )(ωh)x dx

−Δt
∫

Ij

(sn+ 1
2 − s

n+ 1
2

h )Qhνh dx +Δt
∫

Ij

(rn+ 1
2 − r

n+ 1
2

h )Qhαh dx

−Δt
∫

Ij

(qn+ 1
2 − q

n+ 1
2

h )(αh)x dx +
∫

Ij

[sn+1 − sn+1
h ]αh dx −

∫
Ij

[sn − sn
h]αh dx

+
∫

Ij

(rn+ 1
2 − r

n+ 1
2

h )αhΔW̃n dx −Δt
∫

Ij

(qn+ 1
2 − q

n+ 1
2

h )βh dx

−Δt
∫

Ij

(rn+ 1
2 − r

n+ 1
2

h )(βh)x dx

−Δt[(pn+ 1
2 − p̂n+ 1

2 )ν−
h ]j+ 1

2
+Δt[(pn+ 1

2 − p̂n+ 1
2 )ν+

h ]j− 1
2

+Δt[(sn+ 1
2 − ŝn+ 1

2 )ω−
h ]j+ 1

2

−Δt[(sn+ 1
2 − ŝn+ 1

2 )ω+
h ]j− 1

2
+Δt[(qn+ 1

2 − q̂n+ 1
2 )α−

h ]j+ 1
2

−Δt[(qn+ 1
2 − q̂n+ 1

2 )α+
h ]j− 1

2

+Δt[(rn+ 1
2 − r̂n+ 1

2 )β−
h ]j+ 1

2
−Δt[(rn+ 1

2 − r̂n+ 1
2 )β+

h ]j− 1
2

= 0 (3.16)

for all νh,ωh,αh,βh ∈ V k
h .

Summing over j, the error equation becomes

J∑
j=1

Bj(r
n − rn

h , pn − pn
h, sn − sn

h, qn − qn
h; νh,ωh,αh,βh) = 0 (3.17)

for all νh,ωh,αh,βh ∈ V k
h .

Denoting

εn = P−rn − rn
h , ξ n = Pqn − qn

h, ηn = P−sn − sn
h, ζ n = pn

h − Ppn,

Downloaded from https://academic.oup.com/imajna/article-abstract/37/2/1041/2669981/Mean-square-convergence-of-a-symplectic-local
by Academy of Mathematics and System Sciences, CAS user
on 16 September 2017



1060 C. CHEN ET AL.

εn
e = P−rn − rn, ξ n

e = Pqn − qn, ηn
e = P−sn − sn, ζ n

e = pn − Ppn, (3.18)

where P is the standard L
2-projection of a function ω with k + 1 continuous derivatives into space V k

h ,
P− is a special projector into V k

h , which satisfies, for each j,∫
Ij

(P−ω(x)− ω(x))ν(x) dx = 0 ∀ν ∈ Pk−1(Ij),

and P−(ω(x−
j+ 1

2
)) = ω(xj+ 1

2
) and taking the test functions

νh = εn+ 1
2 , ωh = ξ n+ 1

2 , αh = ηn+ 1
2 , βh = ζ n+ 1

2 ,

we obtain the important energy equality

J∑
j=1

Bj(ε
n − εn

e , ζ n
e − ζ n, ηn − ηn

e , ξ n − ξ n
e ; εn+ 1

2 , ξ n+ 1
2 , ηn+ 1

2 , ζ n+ 1
2 ) = 0. (3.19)

Now, we shall prove the theorem by analysing each terms of (3.19).
We consider the left-hand side of the energy equation (3.19). Using the linearity of Bj with respect

to its first group of arguments, we get

Bj(ε
n − εn

e , ζ n
e − ζ n, ηn − ηn

e , ξ n − ξ n
e ; εn+ 1

2 , ξ n+ 1
2 , ηn+ 1

2 , ζ n+ 1
2 )

= Bj(ε
n, −ζ n, ηn, ξ n; εn+ 1

2 , ξ n+ 1
2 , ηn+ 1

2 , ζ n+ 1
2 )

− Bj(ε
n
e , −ζ n

e , ηn
e , ξ n

e ; εn+ 1
2 , ξ n+ 1

2 , ηn+ 1
2 , ζ n+ 1

2 ). (3.20)

First, we consider the first term of the right-hand side in (3.20), which yields

Bj(ε
n, −ζ n, ηn, ξ n; εn+ 1

2 , ξ n+ 1
2 , ηn+ 1

2 , ζ n+ 1
2 )

= 1

2

∫
Ij

(
(εn+1)2 − (εn)2

)
dx + 1

2

∫
Ij

(
(ηn+1)2 − (ηn)2

)
dx

+Δt
[
(ζ+ε−)

n+ 1
2

j+ 1
2

− (ζ+ε+)
n+ 1

2

j− 1
2
] +Δt[(η−ξ−)

n+ 1
2

j+ 1
2

− (η−ξ+)
n+ 1

2

j− 1
2

]
+Δt

[
(ξ+η−)

n+ 1
2

j+ 1
2

− (ξ+η+)
n+ 1

2

j− 1
2
] +Δt[(ε−ζ−)

n+ 1
2

j+ 1
2

− (ε−ζ+)
n+ 1

2

j− 1
2

]
−Δt

∫
Ij

[(ηξ)n+ 1
2

x + (εζ )
n+ 1

2
x ] dx︸ ︷︷ ︸

R

. (3.21)

Applying integration by parts, we arrive at
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R =
[
(η−ξ−)

n+ 1
2

j+ 1
2

− (η+ξ+)
n+ 1

2

j− 1
2

]
+
[
(ε−ζ−)

n+ 1
2

j+ 1
2

− (ε+ζ+)
n+ 1

2

j− 1
2

]
. (3.22)

Substituting (3.22) into (3.21), we have

Bj(ε
n, −ζ n, ηn, ξ n; εn+ 1

2 , ξ n+ 1
2 , ηn+ 1

2 , ζ n+ 1
2 )

= 1

2

∫
Ij

(
(εn+1)2 − (εn)2

)
dx + 1

2

∫
Ij

(
(ηn+1)2 − (ηn)2

)
dx +Δt[Φ̂n+ 1

2

j+ 1
2

− Φ̂
n+ 1

2

j− 1
2

], (3.23)

where

Φ̂
n+ 1

2

j− 1
2

= (ξ n+ 1
2 ,+ηn+ 1

2 ,−)j− 1
2

+ (ζ n+ 1
2 ,+εn+ 1

2 ,−)j− 1
2
,

Φ̂
n+ 1

2

j+ 1
2

= (ξ n+ 1
2 ,+ηn+ 1

2 ,−)j+ 1
2

+ (ζ n+ 1
2 ,+εn+ 1

2 ,−)j+ 1
2
.

As for the second term of the right-hand side in (3.20), we have

Bj(ε
n
e , −ζ n

e , ηn
e , ξ n

e ; εn+ 1
2 , ξ n+ 1

2 , ηn+ 1
2 , ζ n+ 1

2 ) = I + II + III + IV + V , (3.24)

where

I =
∫

Ij

(εn+1
e − εn

e )ε
n+ 1

2 dx +
∫

Ij

(ηn+1
e − ηn

e)η
n+ 1

2 dx,

II = Δt
∫

Ij

(
(ζeξ)

n+ 1
2 − (ζeεx)

n+ 1
2 − (ηeξx)

n+ 1
2 − (ξeηx)

n+ 1
2

− (ξeζ )
n+ 1

2 − (εeζx)
n+ 1

2 − Qh(ηeε)
n+ 1

2 + Qh(εeη)
n+ 1

2

)
dx,

III =
∫

Ij

ε
n+ 1

2
e ηn+ 1

2ΔW̃n dx, IV = −
∫

Ij

η
n+ 1

2
e εn+ 1

2ΔW̃n dx,

V = Δt
[
(ζ+

e ε
−)

n+ 1
2

j+ 1
2

− (ζ+
e ε

+)
n+ 1

2

j− 1
2

− (η−
e ξ

−)
n+ 1

2

j+ 1
2

+ (η−
e ξ

+)
n+ 1

2

j− 1
2

− (ξ e
e η

−)
n+ 1

2

j+ 1
2

− (ξ+
e η

+)
n+ 1

2

j− 1
2

− (ε−
e ζ

−)
n+ 1

2

j+ 1
2

+ (ε−
e ζ

+)
n+ 1

2

j− 1
2

]
.

By using the simple inequality ab ≤ a2

4 + b2, we have

I ≤ ‖εn+1
e − εn

e‖L2(Ij)
‖εn+ 1

2 ‖
L2(Ij)

+ ‖ηn+1
e − ηn

e‖L2(Ij)
‖ηn+ 1

2 ‖
L2(Ij)

≤ CΔt−1‖εn+1
e − εn

e‖2
L2(Ij)

+ CΔt‖εn+ 1
2 ‖2

L2(Ij)

+ CΔt−1‖ηn+1
e − ηn

e‖2
L2(Ij)

+ CΔt‖ηn+ 1
2 ‖2

L2(Ij)
. (3.25)

Downloaded from https://academic.oup.com/imajna/article-abstract/37/2/1041/2669981/Mean-square-convergence-of-a-symplectic-local
by Academy of Mathematics and System Sciences, CAS user
on 16 September 2017



1062 C. CHEN ET AL.

A well-known result of the finite element theory is the following approximation property: for all functions
ω ∈ H

k+1(O) (see Theorem 3.1.6 in Ciarlet (1978))

‖ω̆(x)‖
L2 + h‖ω̆(x)‖L∞ + √

h‖ω̆(x)‖Γh ≤ C‖ω‖
Hk+1hk+1, (3.26)

where ω̆ = Pω − ω or ω̆ = P−ω − ω. The positive constant C is independent of h, and Γh is the
usual L2-norm on the cell interfaces of the mesh, which for this one-dimensional case is ‖ν‖2

Γh
=∑J

j=1

(
(ν−

j+ 1
2
)2 + (ν+

j− 1
2
)2
)

.

Summing over j and taking expectation of (3.25), we get

E

(
J∑

j=1

I

)
≤ CΔt−1

E‖εn+1
e − εn

e‖2
L2([Lf ,Lr ]) + CΔtE‖εn+ 1

2 ‖2
L2([Lf ,Lr ])

+ CΔt−1
E‖ηn+1

e − ηn
e‖2

L2([Lf ,Lr ]) + CΔtE‖ηn+ 1
2 ‖2

L2([Lf ,Lr ]).

Recalling that εn+1
e − εn

e = P−(rn+1 − rn)− (rn+1 − rn) and ηn+1
e − ηn

e = P−(sn+1 − sn)− (sn+1 − sn), we
replaceω in (3.26) with rn+1−rn and sn+1−sn, respectively, and use the estimate of E‖rn+1−rn‖2

Hk+1([Lf ,Lr ])
and E‖sn+1 − sn‖2

Hk+1([Lf ,Lr ]) (see Lemma 3.2 with p = 1) and Lemma 3.1, we have

E‖εn+1
e − εn

e‖2
L2([Lf ,Lr ]) + E‖ηn+1

e − ηn
e‖2

L2([Lf ,Lr ])

≤ Ch2k+2
(
E‖rn+1 − rn‖2

Hk+1([Lf ,Lr ]) + E‖sn+1 − sn‖2
Hk+1

)
≤ CE‖u0‖2

Hk+2([Lf ,Lr ])h
2k+2Δt.

Thus for term I, we obtain

E

(
J∑

j=1

I

)
≤ CE‖u0‖2

Hk+2([Lf ,Lr ])h
2k+2 + CΔtE‖εn+ 1

2 ‖2
L2([Lf ,Lr ])

+ CΔtE‖ηn+ 1
2 ‖2

L2([Lf ,Lr ]). (3.27)

From the property of the projections P and P−, it follows that all the terms in II except the last two
terms are actually zero. We can get the estimates for II via Young’s inequality and Lemma 3.1,

E

(
J∑

j=1

II

)
≤ CE

(‖rn‖2
Hk+2 + ‖sn‖2

Hk+2

)
Δth2k+2

+ Δt

4
E‖εn+ 1

2 ‖2
L2([Lf ,Lr ]) +

Δt

4
E‖ηn+ 1

2 ‖2
L2([Lf ,Lr ])

≤ CE‖u0‖2
Hk+2Δth2k+2 + Δt

4
E‖εn+ 1

2 ‖2
L2([Lf ,Lr ]) +

Δt

4
E‖ηn+ 1

2 ‖2
L2([Lf ,Lr ]).
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For the third term III, we have

E

(
J∑

j=1

III

)
= 1

4
E

∫ Lr

Lf

(εn+1
e − εn

e )(η
n+1 − ηn)ΔW̃n dx

+ 1

2
E

∫ Lr

Lf

(εn+1
e − εn

e )η
nΔW̃n dx + 1

2
E

∫ Lr

Lf

εn
e (η

n+1 − ηn)ΔW̃n dx

=: IIIa + IIIb + IIIc.

For term IIIa, using Young’s inequality, Lemmas 3.1 and 3.2 with p = 2, we have

IIIa ≤ 1

4
E

(
‖εn+1

e − εn
e‖L2([Lf ,Lr ])‖ηn+1 − ηn‖

L2([Lf ,Lr ])‖ΔW̃n‖L∞([Lf ,Lr ])
)

≤ CΔtE‖ηn+1 − ηn‖2
L2([Lf ,Lr ]) + CΔt−1

E

(
‖ΔW̃n‖2

L∞([Lf ,Lr ])‖εn+1
e − εn

e‖2
L2([Lf ,Lr ])

)
≤ CΔtE‖ηn+1 − ηn‖2

L2([Lf ,Lr ])

+ CΔt−1
(

h2k+2
E‖ΔW̃n‖4

L∞([Lf ,Lr ]) + h−(2k+2)
E‖εn+1

e − εn
e‖4

L2([Lf ,Lr ])
)

≤ CΔtE‖ηn+1‖2
L2([Lf ,Lr ]) + CΔtE‖ηn‖2

L2([Lf ,Lr ]) + CΔth2k+2.

Similarly, for term IIIb,

IIIb ≤ 1

2
E

(
‖εn+1

e − εn
e‖L2([Lf ,Lr ])‖ηn‖

L2([Lf ,Lr ])‖ΔW̃n‖L∞([Lf ,Lr ])
)

≤ CE‖εn+1
e − εn

e‖2
L2([Lf ,Lr ]) + CE

(
‖ηn‖2

L2([Lf ,Lr ])‖ΔW̃n‖2
L∞([Lf ,Lr ])

)
≤ CΔtE‖ηn‖2

L2([Lf ,Lr ]) + CΔth2k+2

and for term IIIc,

IIIc ≤ 1

2
E

(
‖εn

e‖L2([Lf ,Lr ])‖ηn+1 − ηn‖
L2([Lf ,Lr ])‖ΔW̃n‖L∞([Lf ,Lr ])

)
≤ CΔtE‖ηn+1 − ηn‖2

L2([Lf ,Lr ]) + CΔt−1
E

(
‖εn

e‖2
L2([Lf ,Lr ])‖ΔW̃n‖2

L∞([Lf ,Lr ])
)

≤ CΔtE‖ηn+1‖2
L2([Lf ,Lr ]) + CΔtE‖ηn‖2

L2([Lf ,Lr ]) + Ch2k+2,

where in the last inequalities for the estimate of IIIb and IIIc, we use the independent property of Wiener
process. The estimate of term IV is similar as that of term III , so we omit the process here.
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Finally, V only contains flux difference terms which all vanish upon a summation in j. Combining
these together, we know that

1

2
E

(
‖εn+1‖2

L2([Lf ,Lr ]) + ‖ηn+1‖2
L2([Lf ,Lr ])

)
− 1

2
E

(
‖εn‖2

L2([Lf ,Lr ]) + ‖ηn‖2
L2([Lf ,Lr ])

)
≤ CΔtE‖εn+1‖2

L2([Lf ,Lr ]) + CΔtE‖εn‖2
L2([Lf ,Lr ])

+ CΔtE‖ηn+1‖2
L2([Lf ,Lr ]) + CΔtE‖ηn‖2

L2([Lf ,Lr ]) + Ch2k+2 + CΔth2k+2.

By Gronwall’s inequality, there exists a constant h0 > 0, for h ≤ h0, we obtain

E

(
‖εn‖2

L2([Lf ,Lr ]) + ‖ηn‖2
L2([Lf ,Lr ])

)
≤ Ch2k+2 + CΔt−1h2k+2, ∀n.

That is,

E‖un − un
h‖2

L2 ≤ Ch2k+2 + CΔt−1h2k+2. (3.28)

The proof is finished. �

3.3 Main result

Combining Theorems 3.3 and 3.4, we obtain the error estimate of (2.7).

Theorem 3.5 Let u(x, t) be the exact solution of the problem (1.1) and assume the initial value u0(x) ∈
L2(Ω; H

k+2) and φ ∈ L2(L
2; H

k+2) (k ≥ 1) . Let un
h be the numerical solution of the symplectic local

discontinuous Galerkin method (2.7). Then there exists a constant h0 > 0 such that for h ≤ h0 holds

E‖u(tn)− un
h‖2

L2 ≤ CΔt2 + Ch2k+2 + CΔt−1h2k+2. (3.29)

The overall convergence rate is usually expressed in terms of the computational cost of the scheme
(Jentzen & Kloeden, 2011). Here the computational cost of method (2.7) is denoted by M = N · J , with
N and J being the total grid number in temporal and spacial directions, respectively. In view of the above

error bound, it is optimal to choose N = M
2k+2
2k+5 and J = M

3
2k+5 , i.e., Δt = O

(
1
N

) = O

((
1
M

) 2k+2
2k+5

)
and

h = O( 1
J ) = O

((
1
M

) 3
2k+5

)
, and we have the optimal error bound

(
E‖u(tn)− un

h‖2
L2

) 1
2 ≤ C

(
1

M

) 2k+2
2k+5

.

Remark 3.6 If k = 1, i.e., the initial data u0 ∈ L2(Ω; H
3) and φ ∈ L2(L

2; H
3), then the mean-square

convergence rate of the method (2.7) with respect to the computational cost is 4
7 .

Remark 3.7 In Section 3, the mean-square convergence was derived for the symplectic local discontin-
uous Galerkin method (2.7) discretized equation (1.1). Note that (1.1) is the linear Schrödinger equation.

Downloaded from https://academic.oup.com/imajna/article-abstract/37/2/1041/2669981/Mean-square-convergence-of-a-symplectic-local
by Academy of Mathematics and System Sciences, CAS user
on 16 September 2017



SYMPLECTIC LDG METHOD FOR SSE 1065

As for nonlinear equation, truncation strategy may be needed to deal with the nonlinear term, as in De
Bouard & Debussche (2004, 2006) and Liu (2013). However, things are a bit technical for the error
estimation of the symplectic local discontinuous Galerkin method, since if we employ truncated strategy
then it has to start by taking H

γ -norm
(
γ > d

2

)
on the error equation; see Remark 3.2 in Liu (2013). It

looks like other technical strategy is needed to derive the mean-square convergence for symplectic local
discontinuous Galerkin method applied to nonlinear case, and it will be our future work.
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